Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis.
نویسندگان
چکیده
Chlamydia trachomatis, an important cause of human disease, is an obligate intracellular bacterial pathogen that relies on the eukaryotic host cell for its replication. Recent reports have revealed that the C. trachomatis vacuole receives host-derived sphingolipids by fusing with trans-Golgi network (TGN)derived secretory vesicles. Here, it is shown that these lipids are required for the growth of the bacteria. C. trachomatis was unable to replicate at 39 degrees C in the Chinese hamster ovary (CHO)-derived cell line SPB-1, a cell line incapable of synthesizing sphingolipids at this temperature because of a temperature-sensitive mutation in the serine palmitoyltransferase (SPT) gene. Complementation with the wild-type SPT gene or addition of exogenous cell-permeable sphingolipid precursors to the mutant cells restored their ability to support chlamydial replication. L-cycloserine (L-CS) and fumonisin B1 (FB1), inhibitors of sphingolipid biosynthesis, decreased the proliferation of the bacteria in eukaryotic cells at concentrations that also decreased host cell sphingolipid synthesis. In the case of FB1, the vacuoles appeared aberrant; the addition of sphingolipid precursors was able to reverse the altered morphology of the FB1-treated vacuoles. Collectively, these data strongly suggest that the growth and replication of chlamydiae is dependent on synthesis of sphingolipids by the eukaryotic host cell and may contribute to this organism's obligate intracellular parasitism.
منابع مشابه
Rottlerin-Mediated Inhibition of Chlamydia trachomatis Growth and Uptake of Sphingolipids Is Independent of p38-Regulated/Activated Protein Kinase (PRAK)
We previously found that rottlerin, a plant-derived small molecule compound, profoundly inhibited Chlamydia trachomatis growth and blocked sphingolipid trafficking from host cell Golgi into chlamydial inclusions. Since the p38-regulated/activated protein kinase (PRAK) is a known target of rottlerin and is activated in Chlamydia trachomatis-infected cells, we investigated the potential role of t...
متن کاملChlamydia trachomatis Intercepts Golgi-Derived Sphingolipids through a Rab14-Mediated Transport Required for Bacterial Development and Replication
Chlamydia trachomatis are obligate intracellular bacteria that survive and replicate in a bacterial-modified phagosome called inclusion. As other intracellular parasites, these bacteria subvert the phagocytic pathway to avoid degradation in phagolysosomes and exploit trafficking pathways to acquire both energy and nutrients essential for their survival. Rabs are host proteins that control intra...
متن کاملInclusion Biogenesis and Reactivation of Persistent Chlamydia trachomatis Requires Host Cell Sphingolipid Biosynthesis
Chlamydiae are obligate intracellular pathogens that must coordinate the acquisition of host cell-derived biosynthetic constituents essential for bacterial survival. Purified chlamydiae contain several lipids that are typically found in eukaryotes, implying the translocation of host cell lipids to the chlamydial vacuole. Acquisition and incorporation of sphingomyelin occurs subsequent to transp...
متن کاملP-41: Association Study of MICA*008 Gene Polymorphism with Chlamydia Trachomatis Infection in Infertile Men Reffer to Royan Institute
Background: Chlamydia trachomatis(CT) is an obligate intracellular bacteria, requires living cells to replicate itself. CT infection can remain up to 4 years in the couple and affect their fertility. The relationship between CT and infertility is very important because most patients are asymptomatic and untreated. After infection with CT, NK activation signals begin through interactions of its ...
متن کاملImmuno-gold Labelling of Chlamydia trachomatis
Background Chlamydia trachomatis is considered as an important cause of preventable sexually transmitted diseases worldwide. It is known to be of an obligate intracellular nature and enters its target cells via an endocytic process. As major outer membrane protein (MOMP) is one of the main candidates for the attachment and entry of chlamydia to the host cells we have tried to label the epitopes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular microbiology
دوره 2 6 شماره
صفحات -
تاریخ انتشار 2000